【南京土壤所在增强植物地上部铵毒耐性的分子生理机制研究中获进展】

  植物铵毒是一个古老的生物学问题,在十九世纪人们就认识到铵分子经常会毒害细胞。随着近代化学氮肥的大量施用,铵过剩带来的植物铵中毒和生物多样性下降越发严重。在我国,每年施氮量2800万吨,仅35%被吸收利用,造成环境氮的积累。同时,随着工业化和城市化进程的快速发展,人工费贵和劳动力匮乏的问题也日益尖锐,为了节省劳动力或者增加肥效,农业生产中经常采用一些“近根施肥”、“一次性集中施肥”、“蔬菜地膜覆盖施肥”等增效措施和施肥方式;这些生产方式和农艺措施虽然符合农业实际生产需求,但也会造成短期内和施肥点的高铵浓度,形成铵毒胁迫环境,引发植物铵中毒。铵毒胁迫会限制植物氮的吸收、限制硝态氮在体内的转化,并且体内多余的铵无法消化,会大量外排造成细胞耗能,限制植株生长。因此,铵毒胁迫已经成为现代农业生产和农林生态系统中不可忽视的问题。除了进一步改进生产方式以外,从植物自身入手,探索调控植物铵耐性的重要基因,以增强植物自身对铵态氮的耐受性,是一个可选择的重要途径。

  地上部是植物进行光合作用以及经济输出的主要部分,也是受铵毒胁迫影响的关键部位之一,生产中常见的作物“烧苗”现象就是地上部铵中毒的可视化呈现。但是目前控制地上部铵耐性的分子生物学途径仍然不清楚,那么如何才能找到一个操控地上部铵耐性程度的关键基因呢?中国科学院南京土壤研究所研究员施卫明课题组通过对突变体库的筛选,经过近4年的潜心鉴定和研究,成功筛选并鉴定到第一个植物叶部铵耐性突变体amot1 (ammonium tolerance 1),AMOT1基因经确定是植物乙烯信号途径的关键转录因子EIN3的等位突变,AMOT1基因的突变体在不同高铵浓度和不同处理时间下,其地上部的生物量和叶直径等生长指标都明显强于普通植株。

  铵态氮与硝态氮相比,铵态氮一个明显的特征就是更易激发细胞的活性氧(ROS)水平(Patterson et al., 2010, Plant, Cell and Environment 33, 1486